If an airplane descends for 18 minutes from 7,500 ft to an airport at 1,300 ft, how far is it from the airport?

Prepare for the Commercial Pilot Airplane Exam with targeted questions. Use flashcards and multiple choice formats that include hints and explanations. Ace your test!

To determine how far the airplane is from the airport based on the information given, we can analyze the descent profile of the aircraft.

First, calculate the altitude difference between the starting point of 7,500 feet and the landing elevation of 1,300 feet. This results in a total altitude loss of 6,200 feet (7,500 - 1,300).

Next, we consider the descent time of 18 minutes. In aviation, it is common to estimate descent rates. A typical rate of descent for commercial flights can be approximated at about 1,500 feet per minute during a stable descent. Using this rate, we can calculate the potential horizontal distance covered during the descent.

Multiplying the rate of descent (1,500 feet per minute) by the duration of the descent (18 minutes) gives us:

1,500 feet/minute * 18 minutes = 27,000 feet.

To convert feet into nautical miles, we use the conversion factor that 1 nautical mile equals 6,076 feet. Therefore, we can convert our horizontal distance into nautical miles:

27,000 feet ÷ 6,076 feet/NM ≈ 4.44 NM.

This represents the horizontal distance traveled during descent

Subscribe

Get the latest from Examzify

You can unsubscribe at any time. Read our privacy policy